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SUMMARY 

The present paper is a sequel to a previous one by the same authors in which a family of up to fourth-order fully 
discrete (FD) upwind numerical schemes was presented. In this paper we extend those high-order FD schemes to 
solutions with discontinuities, e.g. shocks. A rigorous anlaysis of the total variation diminishing (TVD) constraint 
for the high-order FD schemes is carried out. For non-linear systems the TVD constraint is, as usual, applied 
empirically. These schemes are validated by solving a test problem for the time-dependent shallow water 
equations. 
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I .  INTRODUCTION 

In Reference 1 we established a hlly discrete methodology from which two-level explicit arbitrary- 
order conservative upwind schemes can be derived. However, these schemes are only suitable for linear 
systems or non-linear systems with smooth solutions. It is well known that in solving non-linear 
systems with shocks, such as transonic flows, when applying high-order schemes it is inevitable that 
oscillations will be observed in the vicinity of the shocks, which might trigger instabilities. The 
mechanism behind the oscillations was well discussed by Trefethen.’ It turns out that the oscillations 
are caused by the dispersion of the highly oscillatory wave components which are associated with high 
wave numbers of the Fourier spectrum. This problem had frustrated people for many years until the 
concept and theory of total variation diminishing (TVD) schemes was introd~ced.~ Since then a variety 
of second-order TVD schemes have been de~eloped.~ 

In this paper the TVD theory is applied to the conservative upwind highcr-order fully discrete (FD) 
schemes presented in Reference 1. These hgh-order TVD schemes can avoid spurious oscillations and 
preserve high-order accuracy in smooth parts of the flow. This is achieved by imposing a TVD 
constraint via the introduction of flux limiter  function^.^ For second-, third- and fourth-order-accurate 
schemes a rigorous TVD analysis that results in Courant-numberdependent TVD regions is carried 
out. Flux limiter functions are constmcted and tested. For methods of higher oder of accuracy a 
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semiempirical TVD approach that works well is proposed. The extension of these high-order TVD 
schemes to non-linear hyperbolic conservation laws is validated by solving a test problem for the time- 
dependent one-dimensional shallow water equations. 

The rest of this paper is organized as follows. In Section 2 the TVD concept is discussed. In Section 
3 the TVD theory for fully discrete schemes is investigated. In Section 4 the TVD theory is applied to 
derive Courant-number-dependent TVD regions and to construct and test limiter functions for second- 
order methods. In Sections 5 and 6 the TVD theory is applied to third- and fourth-order fully discrete 
schemes. In Section 7 a semiempirical procedure to develop TVD versions of schemes of arbitrary 
order of accuracy is investigated. In Section 8 the extension of the high-order schemes to non-linear 
hyperbolic systems is presented. Conclusions are drawn in Section 9. 

2. TOTAL VARIATION STABILITY 

The total variation TV(U"+') of the discrete solution is defined as 

Under this definition a numerical method is called total variation diminishing if the following condition 
is satisfied: 

which simply states that the total variation is not increased as time evolves, so that TV(U") at any time 
n is bounded by W(U") of the initial data. 

For a consistent, conservative and entropy-satisfying method for a scalar conservation law, provided 
that the condition of inequality (2) is satisfied, the solution will converge to the correct weak solution. 

To apply the TVD concept, we use Harten's t he~rem,~  which states that a scheme written as 

is TVD provided that 

Another more convenient and practical criterion for applying the TVD concept is provided by Roe's 
data compatibility condition:' 
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3. TVD ANALYSIS FOR HIGH-ORDER FD SCHEMES 

The initial value problem (IVP) for the one-dimensional scalar hyperbolic conservation laws is 
considered, namely 

u, +f(u)x  = 0, -co < x < co, t > 0, 
u(x, 0) = uo(x). (9) 

Here u is the unknown function andf(u) is the physical flux. 
First let us consider the linear casef(u) = au so thatf'(u) = a is a constant wave propagation speed. 
The conservation numerical schemes introduced in Reference 1 have the form 

with numerical flux 

F j + 1 / 2  = f(T + q$i) - 3IaIAq+1/2 + bI(DoAq+ip + D I A U / + L + I / ~  + D2AUj+~+1/2), (1 1) 

where Do, D ,  and D2 are coefficients, k is the time step, h is the mesh width, the notation F j + , / 2  is 
equivalent to F(U"; j )  in Reference 1 and 

AU/+q+1/2 = G+,+, - U/Gq (4 = O,L,M),  (12) 

L = - 1  and M = l  forc>O,  L = l  and M = - 1  forc<O.  (13) 

Here c = ak/h is the Courant number. The above flux incluedes three-point second-order space- 
centred schemes, five-point second-order upwind schemes, five-point third-order upwind-biased 
schemes and five-point fourth-order space-centred schemes. For example, when 

Dl =D2 =O, Do = (1 - Icl)/2, (14) 

a second-order space-centred schemes is obtained which has the stability condition IcI < 1; when 

Do = 0 2  = 0,  D1 = (1 - Icl)/2, (15) 

a second-order upwind scheme is obtained which has the stability condition JcI < 2; when 

D2 = 0,  D1 = (1 - &/6. Do = 5 - ( ~ ( / 2  + 2 / 6 ,  (16) 

a five-point third-order upwind-biased scheme is obtained which has the stability condition IcI < 1; 
when 

Do = - 71~J/12 + lc31/12, D, = + )c[/24 - 2/12  - lc31/24, 

0 2  = c2/12 + ( ~ ( / 2 4  - - lc3(/24, (17) 

a five-point fourth-order space-centred scheme is obtained which has the stability condition Icl < 1. 
Imposing a TVD constraint on (1 1 )  via flux limiter functions gives 

Fj+1 /2  = gq' + q$l) - 3IaIq;l - q') + IaI(DoAq+1/2 +DIAq+L+1/2)4j + I ~ I D ~ A ~ + M + I / z ~ ~ + M *  
(18) 

where 4j and 4j+M are flux limiter functions. 
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Theorem 

Scheme (lo), (18), is TVD for ( c I  G 1 if the limiter hc t ion  is determined by 

(1 - I C W j  

" ' q(D1Oj + Do - D2) ' 

' j  ' 1 - IcI + qD2/6? 
q(Do + Olej) ' 

4j b 0, 

where 6, is called the local flow parameter and is defined by 

6, = AUj-112/AUj+l12 for c z 0, 

Oj = A q + 3 / 2 / A q + 1 1 2  for c .c 0, 

67 is called the upwind-downwind flow parameter and is given by 

67 = AUj-112/AU/+312 for c > 0, 

and is defined by 

ProoJ First consider a method with Courant number 0 G c G 1. From (10) and (1 8) the numerical 
method is 

qn+' = qn - ~ ( A U j - l p  + DoAq+lp4 j  + DlAq- lp4 ,  - DoAq-lp4j-i  
(28) 

- D 1 A q - 3 / 2 4 j - 1  - D2A%+1/24j + D2AUj+3/24j+l). 

Modifying equation (28), we have 

We now apply the data compatibility condition of equation (7) whereby the sufficient condition 

O' - A q - 1 1 2  
y+l- q! 

< 1  

satisfies the TVD requirement. 
This is equivalent to Harten's theorem ( 3 x 6 )  with the choice 
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We apply condition (30) to (29), i.e. 

One way to satisfjl these inequalities is by imposing 

i.e. 

1 

4 
This leads to the following conditions on the flux limiter: 

0 < (DO + Q e j - l ) 4 j - ,  -&+j+l < 1 .  (37) 

(38) 

(39) ej 
'3' D ,Bj+Do-D2'  

1 - c + cD24j+1/87 
4j ' c ( ~ o  + q e j )  9 (40) 

(41) 

(42) 

1 + 4 4j+l/e7 'J' Do+D1Bj ' 

'J (Do + D, ej)e7 * 
D2 4j+ 1 

4j 2 0 (43) 

4J ' q(o,ej + D~ - D ~ ) '  

The most restrictive conditions of inequalities (38)-(41) give 

( 1  - C)Oj 

1 -c+Vlo24j+,Ie~ 

(44) 

(45) 
q(D0 + D,ej> ' 

4j < 

where q is defined by equation (27). The analysis for -1 < c < 0 goes through in exactly the same 
way, but c is replaced by IcI and (6,+1 is replaced by 4j-l. Finally, by setting 4j+, = 1 or t$j-, = 1 ,  the 
theorem is established. 
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In the following sections we will use the theorem to construct second-, third- and fourth-order TVD 
schemes. 

4. SECOND-ORDER TVD SCHEME 

The fully discrete second-order numerical flux (see (14)) with limiter function can be written as 

From equations (1 9)-(22) the flux limiter function 4j has to satisfy the constraints 

4, < 2Bj/vl 

4j < 2/13 
4j 2 0. 

When 0, < 0, @j < 0 and the scheme reduces locally to first order by assuming c$j = 0. 
Equations (47) and (48) indicate that the second-order TVD region is a function of the Courant 

number (cl. This conclusion is consistent with that of other  researcher^.^,^ The Courant-number- 
dependent TVD regions of (47) and (48) are shown in Figure 1. The upper boundary of the TVD 
region is maximum for the choice IcJ = i. Sweby's TVD region4 is the special case of IcI = 1 in the 
Courant-number-dependent TVD region of Figure 1. A variety of limiters have been developed within 
the r e g i ~ n . ~  However, we expect that better limiters could be constructed if we fully use the Courant- 
number-dependent TVD region (see Figure 1). 

One limiter function called FD2A (hlly discrete second-order A) has the form 

Cpi(ej) = max 0, min 1 , l  , min Bj, - . [ ( 3 ( 31 
The shaded part in Figure 2 illustrates the limiter function (50). When r] = i, the limiter follows the 
upper boundary of the area, which is Roe's SUPERBEE limiter; when r]  = 1, the limiter function 
follows the lower boundary, which is the MINMOD limiter; for other values of q the limiter function 
varies between SUPERBEE and MINMOD. 

C d )  3 8 c=O 7 

C-o 2 a C-o 8 

C-O a c-1 
v - -  - - - -  

D 

0.0 ,y I I I I I I I $ 8  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 

Figure 1. Courant-number-dependent second-order TVD region 
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Figure 2. FDZA limiter (shaded part) 

Figures 3 and 4 show a comparison of the numerical results using FD2A (symbol) and the exact 
solution (line). The initial condition consists of half a sine wave and a squared wave. The cell width 
Ax = 0.1 is fixed. The Courant numbers used are 0.5, 0.7 and 0.9. The results are shown after 50 time 
steps (Figure 3) and 1000 time steps (Figure 4). Another limiter h c t i o n  is FD2B given by 

+j(ej) = max 0,min 1,’ , min ej, - . [ ( 2:) ( 31 
This is illustrated by the shaded area of Figure 5. Note that the lower boundary now is the SUPERBEE 
limiter. 

Figure 6 shows a comparison between the numerical results of FD2B (symbol) and the exact 
solution (line) after 50 time steps. For discontinuities, FD2B is superior to FD2A. Clipping of extrema 
in the smooth solution is less sever than that of FD2A. The tendency to ‘square’ smooth parts is present 
in both limiters and this is typical of very compressive limiters. 

To illustrate the long-time behaviour of the resulting scheme, Figure 7 shows a comparison of the 
numerical results using SUPERBEE (cross), FD2B (square) and the exact solution (line) after 1000 
time steps. As seen in the figure, the performance of FD2B for the discontinuous part of the solution is 
superior to that of SUPERBEE; for the smooth part of the solution they both tend to square the profile, 
but FD2B shows less ‘clipping’ of extrema. The difference between SUPERBEE and FD2B is more 
noticeable as the Courant number tends to $. 

5. THIRD-ORDER TVD SCHEME 

The five-point third-order scheme has the form (see (16)) for the unlimited case) 
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Figure 3. Comparison between exact solution (line) and numerical results of FDZA (symbol) after 50 time steps 
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Figure 4. Comparison between exact solution (line) and numerical results of FD2A (symbol) after loo0 time steps 
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Figure 5.  FD2B limiter (shaded part) 

From equations (19H22) the limiter functions are determined by 

6 Oj 

6 
q[ej(l + IcI) + 2 - IcII ' 4j 

4J ?[ej(i + ICI) + 2 - i c i l ~  

4j < 0. 

(53) 

(54) 

(55)  

Figure 8 shows the Courant-number-dependent TVD regions of this scheme, which have similar 
features to those of the second-order scheme. The upper boundary of the TVD region is maximum 
when JcJ = $ and minimum when JcJ = 1. The lower boundary is always 4 = 0. 

We can define different third-order flux limiter functions using the Courant-number-dependent TVD 
regions. A general limiter function for the third-order scheme called FD3 (filly discrete third-order) 
has the form 

if 0, < 0. 

In particular we choose a limiter function called FD3A by taking 

v(2 - Icl) e -  
- 6 - ~ ( l  + 1 ~ 1 ) '  

6 - 21(2 - 14) 
?(I + Icl) . 

OR = 

Figure 9 shows the FD3A limiter function for three values of Courant number. They are given by the 
full lines. 
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Figure 6. Comparison between exact solution (line) and numerical results of FDZB (symbol) after 50 time steps 
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Figure 7. Comparison between exact solution (line) and numerical results of SUPERBEE (cross) and FDZB (square) afier 1000 
time steps 
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Figure 8. Courant-numbex-dependent third-order TVD region 

Figure 10 shows the performance of the FD3A limiter hc t ion  for the same test problem as before 
after 50 time steps with Courant numbers 0-5, 0.7 and 0.9. The solid line is the exact solution. The 
numerical results (symbol) are accurate in the smooth part, but discontinuities are smeared with four or 
five interior points. We are interested in the behaviour of the scheme for long-time evolution. Figure 1 1  
gives the results aRer 1000 time steps, showing that this limiter is not very satisfactory for long times; 
it introduces too much numerical diffusion. Recall that owing to the imposition of the TVD property 
the scheme reduces locally to first-order accuracy near extrema. We suggest the limiter function FD3B 
given by 

OL = 1 . 1 ~  - 0.17, 
R 6 = 2-78 - 1-41. 

Figure 12 shows FD3B for Courant number 0.5. 



254 J. SHI AND E. F. TOR0 

0.0 I I I I I 1 I I 1 I i e  
0 1 2  3 4 5 6 7 8 9 10 

Figure 9. FD3A limiter with Courant numbers 0.1, 0.3 an d0.5 (lines) 

Figures 13 and 14 show the comparison of the numerical results of the FD3B limiter function 
(symbol) and the exact solution (line) after 50 and 1000 time steps respectively with Courant numbers 
0.5, 0.7 and 0.9. The numerical results of FD3B are superior to those obtained with FD3A. There is 
virtually no numerical diffusion, but some tendency to ‘square’ the smooth parts is observed. For IcI 
close to the results are very accurate for both the smooth and discontinuous parts of the solution. We 
can expect that the fully discrete third-order flux limiter scheme (FD3B) will give good performance 
for most practical flows. 

6. FOURTH-ORDER TVD SCHEME 

The five-point fourth-order scheme can be written as 

I4 
Fj+1/2 = $(q’ + Fin+l) - y A q + 1 / 2  + (IaIDoAq+l/2 + I ~ I D I A u , + , + ~ / ~ ) ~ ~  + I ~ I D ~ A u , + M + ~ / ~ ~ ~ + M *  

(61) 

where Do, D1, D2 are determined by (1 7). The limiter functions are determined by equations (19)-(22). 
Figure 15 shows the TVD regions of the scheme for 67 = 1. The figure has similar features to those 

of the third-order scheme. 
Based on the general TVD condition for the fourth-order scheme, 

l o  for 6, < 0, 
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Figure 10. Comparison between exact solution (line) and numerical results of FD3A (symbol) after 50 time steps 
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Figure 1 1 .  Comparison between exact solution (line) and numerical results of FD3A (symbol) after 1000 time steps 
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Figure 12. FD3B limiter with Courant number 0.5 (line) 

instead of C$j+M = 1 in equation (20) we define 

+,+M for 0 < 8,+M < 0-5, 

for ej+M > 0.5, 1: for (6j = 0. 
4 j + M  = 

Our first limiter function called FD4A is obtained by setting 

Figures 16 and 17 show comparisons between the numerical results (symbol) and the exact solution 
(line) after 50 and 1000 time steps respectively with Courant numbers 0-5, 0.7 and 0.9. The results 
indicate that the FD4A limiter is satisfactory for short-time evolution but not for long-time evolution. 

Another limiter function called FD4B is obtained by setting 87 and C$j+M equal to unity in equation 
(62) and the choice 

Figures 18 and 19 show the computed results (symbol) and the exact solution (line). The performance 
of FD4B is superior to its counterpart FD4A for both short- and long-time evolution, especially for 
discontinuities. Also, FD4B is simpler than FD4A. 
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Figure 13. Comparison between exact solution (line) and numerical results of FD3B (symbol) after 50 time steps 
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Figure 14. Comparison between exact solution (line) and numerical results of FD3B (symbol) after loo0 time steps 
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Figure 15. Courant-numberdependent fourth-order TVD region for 6y = I 

7. Hth-ORDER TVD SCHEMES 

In order to obtain Hth-order TVD schemes, one approach is to use a hybrid flux limiter method 
following the flux-corrected transport approach* whereby the Hth-order flux can be written as 

where 2 < L < 4, H > 4 and is the Lth-order flux which includes a rigorously derived limiter 
4,. Here 47 is an empirical flux limiter which is unity in smooth regions and makes the flux (68) Hth- 
order-accurate. In regions of high gradients, 4; is zero, which means that the flux (68) reduces to the 
Lth-order scheme with an appropriate limiter. 

In order to determine 47, we need first to define the locally smooth regions for flux (68). We utilize 
the information provided by the Lth-order TVD method. For example, for the third-order method with 
FD3A limiter (Figure 9) the ‘smooth’ regions is given by equation (56), i.e. 

To validate the empirical approach of (68) for high-order methods, we consider 

(L = 3, H = 4 in equation (68)). The results of the scheme can be compared directly with those of the 
fourth-order TVD schemes of the previous section. 
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Figm 16. Comparison between exact solution (line) and numerical results of FWA (symbol) after 50 time steps 



262 J. SHI AND E. F. TOR0 

X 

Figure 17. Comparison between exact solution (line) and numerical results of FD4A (symbol) after lo00 t h e  steps 
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Figure 18. Comparison between exact solution (line) and numerical results of F W B  (symbol) after 50 time step 
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Figure 19. Comparison between exact solution (line) and numerical results of FD4B (symbol) after 1000 time steps 
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Figure 20. Comparison between exact solution (l ie) and numerical results of hybrid fourth-order method (symbol) after 50 time 
steps 
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Figure 21. Comparison between exact solution (line) and numerical results of hybrid fourth-order method (symbol) a h  lo00 
time steps 
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Since the flux (69) involves three intercell boundaries ( j - i , j  + i , j  + 3). locally smooth regions 
must be indicative of smooth flows. for flux (69) mean that in all these c$ls the flow parameters 

Therefore the empirical flux limiter (pi is determined by 

I 47 = 1 if 

(71) c$? = 0 otherwise, 

where 

Figures 20 and 21 show comparisons between the exact solution (line) and the numerical results 
(symbol) obtained by the empirical TVD version of the fourth-order scheme with flux (69) after 50 and 
1000 time steps respectively. It is instructive to compare these results with those obtained by the 
rigorous TVD fourth-order schemes of Figures 16 and 17 (obtained with the FD4A limiter) and 
Figures 18 and 19 (obtained with the FD4B limiter). The TVD condition appears to be more restrictive 
on the fourth-order scheme than on the third-order scheme. The higher-order method has a wider 
stencil and thus has the potential for becoming first-order-accurate (locally) more often than the lower- 
order scheme. 

The hybrid limiting approach of equation (68) provides a satisfactory way of dealing with high-order 
schemes. The basic scheme F;’4i,2 is Lth-order-accurate in smooth parts and has a limiter which is 
theoretically sound. The only empirical aspect comes in the choice of 4yy but the approach suggested 
utilizes the throry for the Lth-order scheme to detect smooth regions, in which 4; is set to unityy giving 
in this way the Hth-order scheme. 

(4 0) 
Figure 22. Dam-break problem by second-order scheme: (a) with FD2A l i t e r  function; (b) with FD2B 
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Figure 23. Dam-break problem by third-order scheme: (a) with FD3A limiter function; @) with FD3BB 

(4 @I 
Figure 24. Dam-break problem by fourth-order scheme: (a) with FMA function; (b) with FMB 

8. NON-LINEAR HYPERBOLIC SYSTEMS 

In this section we discuss the extension of the high-order schemes to non-linear systems of 
conservation laws. We take the one-dimensional shallow water equations as a typical non-linear system 
of conservation laws, 

cp = g h ,  (74) 

where u is the particle velocity, g = 9.8 m s-’ is the gravitational acceleration and h is the depth of the 
shallow water. 
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The system of equations (73) is hyperbolic. The eigenvalues of the Jacobian matrix are 

A (1) = u - a ,  A(2) = u + a, (75) 
where a = l / c p  is the celerity (analogous to the sound speed). 

dam-break problem with data 
We validate the high-order TVD schemes by solving shallow water equations (73) that simulate a 

Figures 22-24 show the comparison between the exact solution (line) and the computed results 
(symbols) using the exact Riemann solver at time t = 2.5 with second-, third- and fourth-order schemes 
respectively. The computational domain is divided into 100 computational cells. The Courant number 
used is 0.8. In each figure the top plot shows the free surface profile in terms of the variable cp and the 
bottom plot shows the particle velocity u-distribution. As can be seen, all schemes can properly capture 
the features of the flow, i.e. the right-travelling bore and the left depression wave. 

9. CONCLUSIONS AND DISCUSSION 

Courant-number-dependent “I3 regions for second-, third- and fourth-order schemes have been 
theoretically established. Some simple flux limiter functions have been proposed and tested via 
numerical experiments. For methods of Hth-order accuracy (H > 4) we propose a semiempirical 
limiting procedure that appears to work well. Tests on the case H = 4 give very satisfactory results. 
The extension of these schemes to systems of non-linear hyperbolic conservation laws has been 
illustrated by solving the ID shallow water equations. 

Although some simple flux limiter functions have been presented in the paper, we expect better 
limiters to emerge, such as the van Lee?”’ and van Albada” smooth-type limiters based on the 
Courant-number-dependent TVD regions. A theory is needed which can rigorously prove that a limiter 
has a combined property of third- or fourth-order accuracy and monotonicity. 
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